Project Title	Funding	Institution	
Aberrant synaptic form and function due to TSC-mTOR-related mutation in autism spectrum disorders	\$300,000	Columbia University	
Aberrant synaptic function caused by TSC mutation in autism	\$0	Columbia University	
A cerebellar mutant for investigating mechanisms of autism in Tuberous Sclerosis	\$0	Boston Children's Hospital	
Activity-dependent phosphorylation of MeCP2	\$174,748	Harvard Medical School	
Allelic choice in Rett syndrome	\$390,481	Winifred Masterson Burke Medical Research Institute	
A stem cell based platform for identification of common defects in autism spectrum disorders	\$28,000	Scripps Research Institute	
Augmentation of the cholinergic system in fragile X syndrome: a double-blind placebo study	\$237,600	Stanford University	
Autism phenotypes in Tuberous Sclerosis: Risk factors, features & architecture	\$0	King's College London	
BDNF and the restoration of synaptic plasticity in fragile X and autism	\$490,756	University of California, Irvine	
Coordinated control of synapse development by autism-linked genes	\$75,000	University of Texas Southwestern Medical Center	
Cortical circuit changes and mechanisms in a mouse model of fragile X syndrome	\$278,656	University of Texas Southwestern Medical Center	
Development of novel diagnostics for fragile X syndrome	\$537,123	JS Genetics, Inc.	
dFMRP and Caprin: Translational regulators of synaptic plasticity	\$12,768	University of Washington	
Dysregulation of mTOR signaling in fragile X syndrome	\$403,767	Albert Einstein College of Medicine of Yeshiva University	
Elucidation and rescue of amygdala abnormalities in the Fmr1 mutant mouse model of fragile X syndrome	\$150,000	George Washington University	
Emergence and stability of autism in fragile X syndrome	\$358,000	University of South Carolina	
Functional circuit disorders of sensory cortex in ASD and RTT	\$254,976	University of Pennsylvania	
Genetically defined stem cell models of Rett and fragile X syndrome	\$175,000	Whitehead Institute for Biomedical Research	
Genetic rescue of fragile X syndrome in mice by targeted deletion of PIKE	\$60,000	Albert Einstein College of Medicine of Yeshiva University	
Genotype-phenotype relationships in fragile X families	\$530,124	University of California, Davis	
Grammatical development in boys with fragile X syndrome and autism	\$148,500	University of Wisconsin - Madison	
Identification of targets for the neuronal E3 ubiquitin ligase PAM	\$60,000	Massachusetts General Hospital	
Investigating the homeostatic role of MeCP2 in mature brain	\$35,400	Baylor College of Medicine	
Investigation of protocadherin-10 in MEF2- and FMRP-mediated synapse elimination	\$51,326	University of Texas Southwestern Medical Center	
In-vivo imaging of neuronal structure and function in a reversible mouse model for autism.	\$28,000	Baylor College of Medicine	
Limbic system function in carriers of the fragile X premutation	\$677,700	University of California, Davis	
Limbic system function in carriers of the fragile X premutation (supplement)	\$382,500	University of California, Davis	
L-type calcium channel regulation of neuronal differentiation	\$32,129	Stanford University	
Mechanism of UBE3A imprint in neurodevelopment	\$33,616	University of California, Davis	
Mechanisms of mGluR5 function and dysfunction in mouse autism models	\$419,137	University of Texas Southwestern Medical Center	

echanisms of synapse elimination by autism-linked genes eCP2 modulation of bdnf signaling: Shared mechanisms of Rett and utism esocorticolimbic dopamine circuitry in mouse models of autism	\$75,000 \$314,059	University of Texas Southwestern Medical Center University of Alabama at Birmingham		
utism	\$314,059	University of Alabama at Birmingham		
esocorticolimbic dopamine circuitry in mouse models of autism		University of Alabama at Birmingham		
	\$87,337	Stanford University		
icroRNAs in synaptic plasticity and behaviors relevant to autism	\$131,220	Massachusetts General Hospital		
odulation of fxr1 splicing as a treatment strategy for autism in fragile X vndrome	\$0	Stanford University		
ouse models of human autism spectrum disorders: Gene targeting in pecific brain regions	\$300,000	University of Texas Southwestern Medical Center		
ouse models of the neuropathology of tuberous sclerosis complex	\$253,177	University of Texas Health Science Center at Houston		
eurobiology of RAI1, the causal gene for Smith-Magenis syndrome	\$31,022	Stanford University		
euronal activity-dependent regulation of MeCP2	\$426,857	Harvard Medical School		
ew approaches to local translation: SpaceSTAMP of proteins synthesized axons	\$246,254	Dana-Farber Cancer Institute		
factory abnormalities in the modeling of Rett syndrome	\$351,575	Johns Hopkins University		
athophysiology of MeCP2 spectrum disorders	\$170,383	Baylor College of Medicine		
eiotropic roles of dyslexia genes in neurodevelopmental language pairments	\$41,800	Yale University		
redicting phenotypic trajectories in Prader-Willi syndrome	\$310,752	Vanderbilt University		
resynaptic fragile X proteins	\$90,000	Brown University		
robing a monogenic form of autism from molecules to behavior	\$187,500	Stanford University		
roteomics in drosophila to identify autism candidate substrates of UBE3A	\$313,159	University of Tennessee Health Science Center		
roteomics in drosophila to identify autism candidate substrates of UBE3A upplement)	\$29,600	University of Tennessee Health Science Center		
uantitative proteomic approach towards understanding and treating autism	\$112,500	Emory University		
egulation of 22q11 genes in embroyonic and adult forebrain	\$308,631	George Washington University		
egulation of synapse elimination by FMRP	\$54,734	University of Texas Southwestern Medical Center		
evealing protein synthesis defects in fragile X syndrome with new chemical ols	\$315,341	Stanford University		
ole of intracellular mGluR5 in fragile X syndrome and autism	\$150,000	Washington University in St. Louis		
ex differences in early brain development; Brain development in turner androme	\$156,841	University of North Carolina at Chapel Hill		
tudy of fragile X mental retardation protein in synaptic function and asticity	\$366,516	University of Texas Southwestern Medical Center		
ynaptic phenotype, development, and plasticity in the fragile X mouse	\$401,852	University of Illinois at Urbana Champaign		
ne functional link between DISC1 and neuroligins: Two genetic factors in e etiology of autism	\$0	Children's Memorial Hospital, Chicago		

Project Title	Funding	Institution	
The microRNA pathway in translational regulation of neuronal development	\$352,647	University of Massachusetts Medical School	
The role of intracellular metabotropic glutamate receptor 5 at the synapse	\$26,338	Washington University in St. Louis	
The role of MeCP2 in Rett syndrome	\$329,781	University of California, Davis	
The role of MeCP2 in Rett syndrome (supplement)	\$38,273	University of California, Davis	
The role of UBE3A in autism	\$62,500	Harvard Medical School	
TrkB agonist therapy for sensorimotor dysfunction in Rett syndrome	\$0	Case Western Reserve University	
Underlying mechanisms in a cerebellum-dependent model of autism	\$0	Harvard Medical School	